Diferencias cinemáticas entre el revés a una y dos manos de tenis usando giróscopos. Un estudio exploratorio

Palabras clave: Vestible, Sensores inerciales, Velocidad angular, Tren superior, deportes de raqueta

Resumen

El objetivo principal del presente estudio es comparar la cinemática angular y la coordinación intersegmentaria del tren superior entre el revés a una y dos manos de tenis en una muestra de 20 jugadores de nivel competición mediante el uso de giróscopos, y comparar las velocidades de pelota y la precisión obtenidas en ambos tipos de revés. La cinemática angular, la coordinación intersegmentaria, la velocidad de pelota y la precisión se obtuvieron de cada jugador mediante una prueba de golpeo realizada con cuatro sensores inerciales colocados (tronco, cabeza, brazo y antebrazo). Se sostiene la hipótesis de que se encontraran diferencias significativas en términos de ωpico y coordinación intersegmentaria en alguno de los segmentos intervinientes en el revés a una y dos manos, pero sucederá lo contrario en las variables velocidad de pelota y precisión. Tras el análisis de los resultados, no se encontraron diferencias significativas entre el revés a una y dos manos en velocidad de pelota y precisión. Sin embargo, se encontraron velocidades angulares pico significativamente más altas en el tronco y brazo sobre el eje x en el revés a dos manos, lo que podría indicar que este tipo de revés genera una rotación de tronco y una rotación externa de brazo y antebrazo mayores que las del revés a una mano. Las velocidades angulares pico fueron significativamente mayores en el brazo y antebrazo sobre el eje z en el caso del revés a una mano, lo cual está relacionado con una mayor extensión del antebrazo acompañada de una terminación más alta del gesto técnico. En conclusión, el modelo propuesto de análisis biomecánico a través del uso de giróscopos es especialmente útil para el análisis cinemático de los golpes de tenis en estudios de campo y podría adaptarse fácilmente a otros deportes, suponiendo una alternativa portable y de bajo coste que además incluye toda la instrumentación y procesamiento de los datos.

Biografía del autor/a

Emilio J Ruiz-Malagón, University of Granada

Department of Physical Education and Sports, Faculty of Physical Activity and Sports Sciences, University of Granada. Sport and Health University Research Institute (iMUDS), University of Granada.

Gabriel Delgado-García, Pontifical University of Comillas

SER Research Group, Department of Physical Activity and Sport Sciences, CESAG, Pontifical University of Comillas, Palma.

Maximiliano Ritacco-Real, University of Granada

Sport and Health University Research Institute (iMUDS), University of Granada. Department of Pedagogy, Faculty of Education Sciences, University of Granada.

Víctor M. Soto-Hermoso, University of Granada

Department of Physical Education and Sports, Faculty of Physical Activity and Sports Sciences, University of Granada. Sport and Health University Research Institute (iMUDS), University of Granada.

Citas

Ahmadi, A., Rowlands, D. D., & James, D. A. (2010). Development of inertial and novel marker-based techniques and analysis for upper arm rotational velocity measurements in tennis. Sports Engineering, 12(4), 179-188. https://doi.org/10.1007/s12283-010-0044-1

Ahmadi, A., Rowlands, D., & James, D. A. (2009). Towards a wearable device for skill assessment and skill acquisition of a tennis player during the first serve. Sports Technology, 2(3-4), 129-136. https://doi.org/10.1080/19346182.2009.9648510

Akutagawa, S., & Kojima, T. (2005). Trunk rotation torques through the hip joints during the one-and two-handed backhand tennis strokes. Journal of sports sciences, 23(8), 781-793. https://doi.org/10.1080/02640410400021609

Allen, T., Choppin, S., & Knudson, D. (2016). A review of tennis racket performance parameters. Sports Engineering, 19(1), 1-11. https://doi.org/10.1007/s12283-014-0167-x

Bahamonde, R. (2005). Review of the biomechanical function of the elbow joint during tennis strokes. International SportMed Journal, 6(2), 42-63.

Bertolotti, G. M., Cristiani, A. M., Colagiorgio, P., Romano, F., Bassani, E., Caramia, N., & Ramat, S. (2015). A wearable and modular inertial unit for measuring limb movements and balance control abilities. IEEE Sensors Journal, 16(3), 790-797. https://doi.org/10.1109/JSEN.2015.2489381

Blackwell, J. R., & Cole, K. J. (1994). Wrist kinematics differ in expert and novice tennis players performing the backhand stroke: implications for tennis elbow. Journal of biomechanics, 27(5), 509-516. https://doi.org/10.1016/0021-9290(94)90062-0

Bourke, A. K., & Lyons, G. M. (2008). A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Medical engineering and physics, 30(1), 84-90. https://doi.org/10.1016/j.medengphy.2006.12.001

Brody, H., & Roetert, P. (2004). Optimizing ball and racket interaction. In Biomedical Engineering Principles in Sports (pp. 183-206). Boston, MA: Springer.

Büthe, L., Blanke, U., Capkevics, H., & Tröster, G. (2016, June). A wearable sensing system for timing analysis in tennis. In 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (pp. 43-48). IEEE. https://doi.org/10.1109/BSN.2016.7516230

Choppin, S., Goodwill, S., & Haake, S. (2011). Impact characteristics of the ball and racket during play at the Wimbledon qualifying tournament. Sports engineering, 13(4), 163-170. https://doi.org/10.1007/s12283-011-0062-7

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2. Auflage). Hillsdale, N. J.: Erlbaum.

Cosac, G., & Ionescu, D. B. (2015). Research approach for outlining the biomechanical parameters of the tennis serve. Palestrica of the Third Millennium Civilization & Sport, 16(4).

Delgado-García, G., Vanrenterghem, J., Muñoz-García, A., Ruiz-Malagón, E. J., Mañas-Bastidas, A., & Soto-Hermoso, V. M. (2019). Probabilistic structure of errors in forehand and backhand groundstrokes of advanced tennis players. International Journal of Performance Analysis in Sport, 19(5), 698-710. https://doi.org/10.1080/24748668.2019.1647733

Delgado-García, G., Vanrenterghem, J., Ruiz-Malagón, E. J., Molina-García, P., Courel-Ibáñez, J., & Soto-Hermoso, V. M. (2021). IMU gyroscopes are a valid alternative to 3D optical motion capture system for angular kinematics analysis in tennis. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 235(1), 3-12. https://doi.org/10.1177/1754337120965444

Fanchiang, H. C., Finch, A., & Ariel, G. (2013). Effects of one and two handed tennis backhands hit with varied power levels on torso rotation. In ISBS-Conference Proceedings Archive (Vol. 1, No. 1). https://ojs.ub.uni-konstanz.de/cpa/article/view/5589

Fernandez-Fernandez, J., Kinner, V., & Ferrauti, A. (2010). The physiological demands of hitting and running in tennis on different surfaces. The Journal of Strength & Conditioning Research, 24(12), 3255-3264. https://doi.org/10.1519/JSC.0b013e3181e8745f

Fogt, N., & Persson, T. W. (2017). A pilot study of horizontal head and eye rotations in baseball batting. Optometry and vision science: official publication of the American Academy of Optometry, 94(8), 789-796. https://doi.org/10.1097/OPX.0000000000001100

Genevois, C., Reid, M., Rogowski, I., & Crespo, M. (2015). Performance factors related to the different tennis backhand groundstrokes: a review. Journal of sports science & medicine, 14(1), 194-202. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306773/

Giangarra, C. E., Conroy, B., Jobe, F. W., Pink, M., & Perry, J. (1993). Electromyographic and cinematographic analysis of elbow function in tennis players using single-and double-handed backhand strokes. The American Journal of Sports Medicine, 21(3), 394-399. https://doi.org/10.1177/036354659302100312

Grimpampi, E., Masci, I., Pesce, C., & Vannozzi, G. (2016). Quantitative assessment of developmental levels in overarm throwing using wearable inertial sensing technology. Journal of Sports Sciences, 34(18), 1759-1765. https://doi.org/10.1080/02640414.2015.1137341

Hansen, C., Martin, C., Rezzoug, N., Gorce, P., Bideau, B., & Isableu, B. (2017). Sequence-dependent rotation axis changes in tennis. Sports biomechanics, 16(3), 411-423. https://doi.org/10.1080/14763141.2017.1332237

International Tennis Federation [ITF]. (2015). Approved tennis balls, classified surfaces y recognized courts- a guide to products and test methods.

Kelley, J., Choppin, S. B., Goodwill, S. R., & Haake, S. J. (2010). Validation of a live, automatic ball velocity and spin rate finder in tennis. Procedia engineering, 2(2), 2967-2972. https://doi.org/10.1016/j.proeng.2010.04.096

Knudson, D., & Blackwell, J. (1997). Upper extremity angular kinematics of the one-handed backhand drive in tennis players with and without tennis elbow. International Journal of Sports Medicine, 18(2), 79-82. https://doi.org/10.1055/s-2007-972599

Kwon, S., Pfister, R., Hager, R. L., Hunter, I., & Seeley, M. K. (2017). Influence of tennis racquet kinematics on ball topspin angular velocity and accuracy during the forehand groundstroke. Journal of Sports Science & Medicine, 16(4), 505. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721180/

Lafont, D. (2008). Gaze control during the hitting phase in tennis: a preliminary study. International Journal of Performance Analysis in Sport, 8(1), 85-100.

Landlinger, J., Lindinger, S., Stöggl, T., Wagner, H., y Müller, E. (2010). Key factors and timing patterns in the tennis forehand of different skill levels. Journal of Sports Science and Medicine, 9(4), 643-651. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761808/

Lenhard, W. & Lenhard, A. (2016). Calculation of Effect Sizes. Psychometrica. https://www.psychometrica.de/effect_size.html

Lo, K. C., & Hsieh, Y. C. (2016). Comparison of ball-and-racket impact force in two-handed backhand stroke stances for different-skill-level tennis players. Journal of sports science & medicine, 15(2), 301-307. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879444/

Lyons, M., Al-Nakeeb, Y., Hankey, J., & Nevill, A. (2013). The effect of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. Journal of Sports Science and Medicine, 12(2), 298-308. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761827/

Manal, K. M. D. I., Davis, I. M., Galinat, B., & Stanhope, S. (2003). The accuracy of estimating proximal tibial translation during natural cadence walking: bone vs. skin mounted targets. Clinical Biomechanics, 18(2), 126-131. https://doi.org/10.1016/S0268-0033(02)00176-6

Muhamad, T. A., Rashid, A. A., Razak, M. R. A., & Salamuddin, N. (2011). A comparative study of backhand strokes in tennis among national tennis players in Malaysia. Procedia-Social and Behavioral Sciences, 15, 3495-3499.

N. Marshall, R., & Elliott, B. C. (2000). Long-axis rotation: The missing link in proximal-to-distal segmental sequencing. Journal of sports sciences, 18(4), 247-254. https://doi.org/10.1080/026404100364983

Reid, M. (2001) Biomechanics of the one and two-handed backhands. ITF Coaching and Sport Science Review, 9(24), 8-12.

Reid, M., & Elliott, B. (2002). Tennis: The one‐and two‐handed backhands in tennis. Sports Biomechanics, 1(1), 47-68. https://doi.org/10.1080/14763140208522786

Reid, M., Elliott, B., & Crespo, M. (2013). Mechanics and learning practices associated with the tennis forehand: a review. Journal of sports science & medicine, 12(2), 225-231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761830/

Roetert, E. P., Brody, H., Dillman, C. J., Groppel, J. L., & Schultheis, J. M. (1995). The biomechanics of tennis elbow. An integrated approach. Clinics in Sports Medicine, 14(1), 47-57. https://europepmc.org/article/med/7712557

Roetert, E. P., Garrett, G. E., Brown, S. W., & Camaione, D. N. (1992). Performance profiles of nationally ranked junior tennis players. The Journal of Strength & Conditioning Research, 6(4), 225-231.

Sharma, M., Srivastava, R., Anand, A., Prakash, D., & Kaligounder, L. (2017, March). Wearable motion sensor based phasic analysis of tennis serve for performance feedback. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5945-5949). IEEE. https://doi.org/10.1109/ICASSP.2017.7953297

Stępień, A., Bober, T., & Zawadzki, J. (2011). The kinematics of trunk and upper extremities in one-handed and two-handed backhand stroke. Journal of human kinetics, 30, 37-47. https://doi.org/10.2478/v10078-011-0071-4

Van den Tillaar, R., & Ettema, G. (2006). A Comparison between Novices and Experts of the Velocity-Accuracy Trade-Off in Overarm Throwing. Perceptual and Motor Skills, 103(2), 503-514. https://doi.org/10.2466/pms.103.2.503-514

Publicado
2022-06-30
Cómo citar
Ruiz-Malagón, E. J., Delgado-García, G., Ritacco-Real, M., & Soto-Hermoso, V. M. (2022). Diferencias cinemáticas entre el revés a una y dos manos de tenis usando giróscopos. Un estudio exploratorio. International Journal of Racket Sports Science, 4(1), 16-24. https://doi.org/10.30827/Digibug.76982