Evaluation of a Freely Available Sensor Racket as a Diagnostic and Training Tool in Elite Badminton

Keywords: Inertial sensor systems, movement analysis, racket sports, badminton

Abstract

To avoid the drawbacks of optical video-based motion capture systems and due to the ongoing miniaturization of integrated sensors, an increasing variety of sensor-based systems has been used for motion capture in sports. Meanwhile, there are ready-made, commercially available solutions that claim to be capable of recording reliable kinematic data. This research project focuses on the question of whether a commercially available badminton racket with an integrated sensor device (Oliver® Plasma TX 5) provides meaningful data for diagnostic and training purposes in elite sports. Therefore, 16 elite badminton players executed jump smashes using this sensor racket while the kinematics of the stroke technique were recorded using a high speed video-based system. Bland-Altman plots were applied to analyze the agreement between the two systems. The plots revealed a systematic bias and 95% limits of agreement ranging from 6% to 23%: The detection of stroke techniques showed a 42% rate of success. These data show that the measurement accuracy of the sensor racket is not sufficient for use in diagnostics or training. Future development of the sensor racket could include a method to calibrate the system prior to a measurement, in addition to correcting the underlying algorithm to reduce the bias.

Author Biographies

Wolf Gawin, Technical University of Chemnitz

Institute of Human Movement Science and Health, Technical University of Chemnitz, Chemnitz

Andreas Herbstreit, Technical University of Chemnitz

Institute of Human Movement Science and Health, Technical University of Chemnitz, Chemnitz

Udo Fries, Technical University of Chemnitz

Institute of Human Movement Science and Health, Technical University of Chemnitz, Chemnitz

Christian Maiwald, Technical University of Chemnitz

Institute of Human Movement Science and Health, Technical University of Chemnitz, Chemnitz

References

Alanen, A., Räisänen, A., Benson, L., & Pasanen, K. (2021). The use of inertial measurement units for analyzing change of direction movement in sports: A scoping review. International Journal of Sports Science & Coaching, 16(6), 1332-1353. https://doi.org/10.1177/17479541211003064

Bland, J. M., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The lancet, 327(8476), 307-310. https://doi.org/10.1016/S0140-6736(86)90837-8

Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method comparison studies. Statistical methods in medical research, 8(2), 135-160. https://doi.org/10.1177/096228029900800204

Bland, J. M., & Altman, D. G. (2007). Agreement between methods of measurement with multiple observations per individual. Journal of biopharmaceutical statistics, 17(4), 571-582. https://doi.org/10.1080/10543400701329422

Gawin, W. (2010). Der Einsatz der Accelerometrie zur Bewegungsanalyse in hochdynamischen Sportarten am Beispiel Badminton [Application of an Accelerometric Measurement Device in Highly Dynamical Sports Using the Example of Badminton]. Göttingen: Sierke-Verlag.

Gawin, W., Beyer, C., Büsch, D., & Høi, J. (2012). Die asiatische Überlegenheit beim Schmetterschlag: Videometrische Analysen der internationalen Badmintonelite im Wettkampf [The Asian Superiority in Smashing. Videometric Analysis of International Elite Badminton in Competition]. Zeitschrift für Angewandte Trainingswissenschaft, 19(1), 67-81.

Jaitner, T., & Gawin, W. (2007). Analysis of badminton smash with a mobile measure device based on accelerometry. In ISBS-Conference Proceedings Archive. Ouro Preto, Brazil. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjrvrmdwen2AhUEVTABHdc7BIwQFnoECAUQAQ&url=https%3A%2F%2Fojs.ub.uni-konstanz.de%2Fcpa%2Farticle%2Fview%2F460%2F400&usg=AOvVaw1xlnNZ-v-deaiq1NHLy_2l

Jaitner, T., & Gawin, W. (2010). A mobile measure device for the analysis of highly dynamic movement techniques. Procedia Engineering, 2(2), 3005-3010. https://doi.org/10.1016/j.proeng.2010.04.102

Kerner, S., & Witt, M. (2013). Vergleich der Bewegungsparameter der oberen Extremitäten beim Absprung im Turmspringen: Inertialmesssystem vs. 3 D Videoanalyse [Comparison of movement parameters of the upper extremities when jumping off in high diving: Inertial measurement system versus 3D-video analysis] In T. L. Milani, C. Maiwald, & D. Oriwol (Eds.), Neue Ansätze in der Bewegungsforschung. Jahrestagung der dvs-Sektion Biomechanik vom 13.-15. März 2013 in Chemnitz (Vol. 235, pp. 144-149). Czwalina.

Kiang, C. T., Yoong, C. K., & Spowage, A. (2009). Local sensor system for badminton smash analysis. In Instrumentation and Measurement Technology Conference, 883-888. https://doi.org/10.1109/IMTC.2009.5168575

Krüger, A., & Edelmann-Nusser, J. (2010). Application of a full body inertial measurement system in alpine skiing: a comparison with an optical video based system. Journal of applied biomechanics, 26(4), 516-521. https://doi.org/10.1123/jab.26.4.516

Kwan, M., Andersen, M. S., Cheng, C. L., Tang, W. T., & Rasmussen, J. (2011). Investigation of high-speed badminton racket kinematics by motion capture. Sports Engineering, 13(2), 57-63. https://doi.org/10.1007/s12283-010-0053-0

Kwan, M., Cheng, C. L., Tang, W. T., & Rasmussen, J. (2010). Measurement of badminton racket deflection during a stroke. Sports Engineering, 12(3), 143-153. https://doi.org/10.1007/s12283-010-0040-5

Kwan, M., & Rasmussen, J. (2010). The importance of being elastic: Deflection of a badminton racket during a stroke. Journal of sports sciences, 28(5), 505-511. https://doi.org/10.1080/02640410903567785

Pei, W., Wang, J., Xu, X., Wu, Z., & Du, X. (2017). An embedded 6-axis sensor based recognition for tennis stroke. In IEEE International Conference on Consumer Electronics (ICCE) (pp. 55-58). https://doi.org/10.1109/ICCE.2017.7889228

R_Core_Team. (2017). R: A language and environment for statistical computing.

Sakurai, S., & Ohtsuki, T. (2000). Muscle activity and accuracy of performance of the smash stroke in badminton with reference to skill and practice. Journal of sports sciences, 18(11), 901-914. https://doi.org/10.1080/026404100750017832

Taha, Z., Hassan, M. S. S., Yap, H. J., & Yeo, W. K. (2016). Preliminary investigation of an innovative digital motion analysis device for badminton athlete performance evaluation. Procedia Engineering, 147, 461-465. https://doi.org/10.1016/j.proeng.2016.06.341

Tsai, C.-L., Yang, C.-C., Lin, M.-S., Huang, K.-S., & S.-S, C. (2006). The surface emg activity of the upper limb muscles of badminton forehand and backhand smashes. In 24 International Symposium on Biomechanics in Sports. Salzburg.

Tsai, C. L., & Chang, S. S. (1998). Biomechanical analysis of differences in the badminton smash and jump smash between Taiwan elite and collegiate players. In H. J. Riehle & M. M. Vieten (Eds.), 16 International Symposium on Biomechanics in Sports (pp. 259-262). https://ojs.ub.uni-konstanz.de/cpa/article/view/990

Tsai, C. L., Huang, K. S., & Chang, S. S. (2005). Biomechanical Analysis of EMG Activity between Badminton Smash and Drop Shot. In 23 International Symposium on Biomechanics in Sports. Beijing.

Tsai, C. L., Yang, C. C., Lin, M. S., & Huang, K. S. (2005). The surface emg activity analysis between badminton smash and jump smash. In 23 International Symposium on Biomechanics in Sports. Beijing.

Wang, Z., Guo, M., & Zhao, C. (2016). Badminton Stroke Recognition Based on Body Sensor Networks. IEEE Transactions on Human-Machine Systems, 46(5), 769-775. https://doi.org/10.1109/THMS.2016.2571265

Yonex Corporation. (2010, September 25). ArcSaber Z-Slash. Yonex Corporation. http://www.yonex.com/badminton/z-slash/091007.html.

Published
2022-06-30
How to Cite
Gawin, W., Herbstreit, A., Fries, U., & Maiwald, C. (2022). Evaluation of a Freely Available Sensor Racket as a Diagnostic and Training Tool in Elite Badminton. International Journal of Racket Sports Science, 4(1), 2-8. https://doi.org/10.30827/Digibug.77205